Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
2.
Br J Haematol ; 204(4): 1383-1392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442908

ABSTRACT

Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome (WHIMS) is a rare combined primary immunodeficiency caused by the gain of function of the CXCR4 chemokine receptor. We present the prevalence of cancer in WHIMS patients based on data from the French Severe Chronic Neutropenia Registry and an exhaustive literature review. The median follow-up of the 14 WHIMS 'patients was 28.5 years. A central review and viral evaluation of pathological samples were organized, and we conducted a thorough literature review to identify all reports of WHIMS cases. Six French patients were diagnosed with cancer at a median age of 37.6 years. The 40-year risk of malignancy was 39% (95% confidence interval [CI]: 6%-74%). We observed two human papillomavirus (HPV)-induced vulvar carcinomas, three lymphomas (two Epstein-Barr virus [EBV]-related) and one basal cell carcinoma. Among the 155 WHIMS cases from the literature, 22 cancers were reported in 16 patients, with an overall cancer 40-year risk of 23% (95% CI: 13%-39%). Malignancies included EBV-associated lymphoproliferative disorders and HPV-positive genital and anal cancers as in the French cohort. Worldwide, nine cases of malignancy were associated with HPV and four with EBV. Immunocompromised WHIMS patients appear to be particularly susceptible to developing early malignancy, mainly HPV-induced carcinomas, followed by EBV-related lymphomas.


Subject(s)
Agammaglobulinemia , Carcinoma , Epstein-Barr Virus Infections , Lymphoma , Papillomavirus Infections , Primary Immunodeficiency Diseases , Warts , Humans , Adult , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Warts/complications , Warts/epidemiology , Warts/diagnosis , Syndrome , Receptors, CXCR4
3.
STAR Protoc ; 5(1): 102828, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38245871

ABSTRACT

Human papillomaviruses (HPVs) are commensal viruses with pathogenic potential. Their life cycle requires the proliferation and differentiation of keratinocytes (KCs) to form pluristratified epithelia. Based on the original organotypic epithelial raft cultures protocol, we provide an updated workflow to optimally generate pluristratified human epithelia supporting the complete HPV replicative life cycle, here called 3D full-thickness epithelial cultures (3Deps). We describe steps for HPV genome preparation, KC transfection, and dermal equivalent preparation. We then detail procedures for 3Deps culture, harvesting, and analysis.


Subject(s)
Papillomavirus Infections , Viruses , Humans , Human Papillomavirus Viruses , Keratinocytes , Epithelium
4.
Front Cell Infect Microbiol ; 13: 1138232, 2023.
Article in English | MEDLINE | ID: mdl-37260709

ABSTRACT

Human papillomaviruses (HPVs) are highly prevalent commensal viruses that require epithelial stratification to complete their replicative cycle. While HPV infections are most often asymptomatic, certain HPV types can cause lesions, that are usually benign. In rare cases, these infections may progress to non-replicative viral cycles associated with high HPV oncogene expression promoting cell transformation, and eventually cancer when not cleared by host responses. While the consequences of HPV-induced transformation on keratinocytes have been extensively explored, the impact of viral replication on epithelial homeostasis remains largely unexplored. Gap junction intercellular communication (GJIC) is critical for stratified epithelium integrity and function. This process is ensured by a family of proteins named connexins (Cxs), including 8 isoforms that are expressed in stratified squamous epithelia. GJIC was reported to be impaired in HPV-transformed cells, which was attributed to the decreased expression of the Cx43 isoform. However, it remains unknown whether and how HPV replication might impact on the expression of Cx isoforms and GJIC in stratified squamous epithelia. To address this question, we have used 3D-epithelial cell cultures (3D-EpCs), the only model supporting the productive HPV life cycle. We report a transcriptional downregulation of most epithelial Cx isoforms except Cx45 in HPV-replicating epithelia. At the protein level, HPV replication results in a reduction of Cx43 expression while that of Cx45 increases and displays a topological shift toward the cell membrane. To quantify GJIC, we pioneered quantitative gap-fluorescence loss in photobleaching (FLIP) assay in 3D-EpCs, which allowed us to show that the reprogramming of Cx landscape in response to HPV replication translates into accelerated GJIC in living epithelia. Supporting the pathophysiological relevance of our observations, the HPV-associated Cx43 and Cx45 expression pattern was confirmed in human cervical biopsies harboring HPV. In conclusion, the reprogramming of Cx expression and distribution in HPV-replicating epithelia fosters accelerated GJIC, which may participate in epithelial homeostasis and host immunosurveillance.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Humans , Connexins/genetics , Connexins/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Human Papillomavirus Viruses , Gap Junctions/metabolism , Epithelium , Cell Communication/physiology , Cell Transformation, Neoplastic
5.
J Immunol ; 210(12): 1913-1924, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37133343

ABSTRACT

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.


Subject(s)
Agammaglobulinemia , Heterocyclic Compounds , Immunologic Deficiency Syndromes , Lymphopenia , Neutropenia , Humans , Animals , Mice , Immunologic Deficiency Syndromes/genetics , Hematopoietic Stem Cell Mobilization/adverse effects , Agammaglobulinemia/complications , Agammaglobulinemia/genetics , Neutropenia/genetics , CD8-Positive T-Lymphocytes , Receptors, CXCR4/genetics
6.
Proc Natl Acad Sci U S A ; 120(2): e2213056120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595686

ABSTRACT

Despite the essential role of plasma cells in health and disease, the cellular mechanisms controlling their survival and secretory capacity are still poorly understood. Here, we identified the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Sec22b as a unique and critical regulator of plasma cell maintenance and function. In the absence of Sec22b, plasma cells were hardly detectable and serum antibody titers were dramatically reduced. Accordingly, Sec22b-deficient mice fail to mount a protective immune response. At the mechanistic level, we demonstrated that Sec22b contributes to efficient antibody secretion and is a central regulator of plasma cell maintenance through the regulation of their transcriptional identity and of the morphology of the endoplasmic reticulum and mitochondria. Altogether, our results unveil an essential and nonredundant role for Sec22b as a regulator of plasma cell fitness and of the humoral immune response.


Subject(s)
Plasma Cells , SNARE Proteins , Mice , Animals , Plasma Cells/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Endoplasmic Reticulum/metabolism , Biological Transport
7.
Virologie (Montrouge) ; 27(6): 333-354, 2023 Dec 01.
Article in French | MEDLINE | ID: mdl-38239028

ABSTRACT

The virome of the skin, defined as all viruses detected in the skin, represents a significant part of the microbiota. A much more recent discovery than the bacterial flora, the existence of the cutaneous virome has been revealed by recent metagenomic studies. The normal human skin virome is dominated by bacteriophages, Papillomaviridae, whose genomic diversity has proved extraordinary, and Polyomaviridae. Many yet unknown viral genomes within this virome await identification. The composition of the virome of the skin has been shown to be strictly individual and relatively stable over time, resulting from adaptation to everyone's genetics, lifestyle and mechanisms of immunological tolerance finely selected over the course of evolution. Yet little studied, the virome of the skin and all its interactions with other microbiota and the host are attracting growing interest. Indeed, constitutional or acquired alterations in the homeostasis between the commensal virome and the skin, ranging from sub-clinical viral dysbiosis to severe transformation of keratinocytes or adnexal cells, have been observed. These recent observations are stimulating the search for innovative solutions aimed at measuring or even modulating its pathological expression, with a view to personalized medicine.


Subject(s)
Bacteriophages , Viruses , Humans , Virome , Precision Medicine , Viruses/genetics , Bacteriophages/genetics , Skin/microbiology
8.
Immunohorizons ; 6(7): 543-558, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882421

ABSTRACT

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome immunodeficiency is caused by autosomal dominant gain-of-function CXCR4 mutations that promote severe panleukopenia caused by bone marrow retention of mature leukocytes. Consequently, WHIM patients develop recurrent bacterial infections; however, sepsis is uncommon. To study this clinical dichotomy, we challenged WHIM model mice with LPS. The LD50 was similar in WHIM and wild-type (WT) mice, and LPS induced acute lymphopenia in WT mice that was Cxcr4 independent. In contrast, in WHIM mice, LPS did not affect circulating T cell levels, but the B cell levels anomalously increased because of selective, cell-intrinsic, and Cxcr4 WHIM allele-dependent emergence of Cxcr4high late pre-B cells, a pattern that was phenocopied by Escherichia coli infection. In both WT and WHIM mice, the CXCR4 antagonist AMD3100 rapidly increased circulating lymphocyte levels that then rapidly contracted after subsequent LPS treatment. Thus, LPS-induced lymphopenia is CXCR4 independent, and a WHIM mutation does not increase clinical LPS sensitivity. Anomalous WT Cxcr4-independent, but Cxcr4 WHIM-dependent, promobilizing effects of LPS on late pre-B cell mobilization reveal a distinct signaling pathway for the variant receptor.


Subject(s)
Agammaglobulinemia , Lymphopenia , Neutropenia , Warts , Agammaglobulinemia/genetics , Animals , Endotoxins/therapeutic use , Lipopolysaccharides , Mice , Neutropenia/genetics , Primary Immunodeficiency Diseases , Warts/drug therapy , Warts/genetics
9.
Nat Commun ; 13(1): 1076, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228537

ABSTRACT

Despite the high prevalence of both cervico-vaginal human papillomavirus (HPV) infection and bacterial vaginosis (BV) worldwide, their causal relationship remains unclear. While BV has been presumed to be a risk factor for HPV acquisition and related carcinogenesis for a long time, here, supported by both a large retrospective follow-up study (n = 6,085) and extensive in vivo data using the K14-HPV16 transgenic mouse model, we report a novel blueprint in which the opposite association also exists. Mechanistically, by interacting with several core members (NEMO, CK1 and ß-TrCP) of both NF-κB and Wnt/ß-catenin signaling pathways, we show that HPV E7 oncoprotein greatly inhibits host defense peptide expression. Physiologically secreted by the squamous mucosa lining the lower female genital tract, we demonstrate that some of these latter are fundamental factors governing host-microbial interactions. More specifically, several innate molecules down-regulated in case of HPV infection are hydrolyzed, internalized and used by the predominant Lactobacillus species as amino acid source sustaining their growth/survival. Collectively, this study reveals a new viral immune evasion strategy which, by its persistent/negative impact on lactic acid bacteria, ultimately causes the dysbiosis of vaginal microbiota.


Subject(s)
Microbiota , Papillomavirus Infections , Vaginosis, Bacterial , Amino Acids , Animals , Female , Follow-Up Studies , Lactobacillus/physiology , Mice , Microbiota/physiology , Mucous Membrane , Peptides , Retrospective Studies , Vagina/microbiology , Vaginosis, Bacterial/microbiology
10.
Cancers (Basel) ; 14(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35159113

ABSTRACT

Chemokines interact with glycosaminoglycans of the extracellular matrix and activate heptahelical cellular receptors that mainly consist of G Protein-Coupled Receptors and a few atypical receptors also with decoy activity. They are well-described targets of oncogenic pathways and key players in cancer development, invasiveness, and metastasis acting both at the level of cancer cells and cells of the tumor microenvironment. Hence, they can regulate cancer cell proliferation and survival and promote immune or endothelial cell migration into the tumor microenvironment. Additionally, oncogenic viruses display the potential of jeopardizing the chemokine system by encoding mimics of chemokines and receptors as well as several products such as oncogenic proteins or microRNAs that deregulate their human host transcriptome. Conversely, the chemokine system participates in the host responses that control the virus life cycle, knowing that most oncoviruses establish asymptomatic latent infections. Therefore, the deregulated expression and function of chemokines and receptors as a consequence of acquired or inherited mutations could bias oncovirus infection toward pro-oncogenic pathways. We here review these different processes and discuss the anticancer therapeutic potential of targeting chemokine availability or receptor activation, from signaling to decoy-associated functions, in combination with immunotherapies.

11.
Front Immunol ; 13: 799564, 2022.
Article in English | MEDLINE | ID: mdl-35154113

ABSTRACT

The study of inborn errors of immunity (IEI) provides unique opportunities to elucidate the microbiome and pathogenic mechanisms related to severe viral infection. Several immunological and genetic anomalies may contribute to the susceptibility to develop Human Papillomavirus (HPV) pathogenesis. They include different acquired immunodeficiencies, EVER1-2 or CIB1 mutations underlying epidermodysplasia verruciformis (EV) syndrome and multiple IEI. Whereas EV syndrome patients are specifically unable to control infections with beta HPV, individuals with IEI show broader infectious and immune phenotypes. The WHIM (warts, hypogammaglobulinemia, infection, and myelokathexis) syndrome caused by gain-of-CXCR4-function mutation manifests by HPV-induced extensive cutaneous warts but also anogenital lesions that eventually progress to dysplasia. Here we report alterations of B and NK cells in a female patient suffering from cutaneous and mucosal HPV-induced lesions due to an as-yet unidentified genetic defect. Despite no detected mutations in CXCR4, B but not NK cells displayed a defective CXCR4-dependent chemotactic response toward CXCL12. In addition, NK cells showed an abnormal distribution with an expanded CD56bright cell subset and defective cytotoxicity of CD56dim cells. Our observations extend the clinical and immunological spectrum of IEI associated with selective susceptibility toward HPV pathogenesis, thus providing new insight on the immune control of HPV infection and potential host susceptibility factors.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Papillomavirus Infections/diagnosis , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/etiology , Receptors, CXCR4/metabolism , Biomarkers , Disease Susceptibility , Humans , Papillomavirus Infections/etiology , Primary Immunodeficiency Diseases/diagnosis
13.
Cells ; 10(11)2021 11 13.
Article in English | MEDLINE | ID: mdl-34831376

ABSTRACT

Dendritic cells (DCs) are key players in the control of tolerance and immunity. Glucocorticoids (GCs) are known to regulate DC function by promoting their tolerogenic differentiation through the induction of inhibitory ligands, cytokines, and enzymes. The GC-induced effects in DCs were shown to critically depend on increased expression of the Glucocorticoid-Induced Leucine Zipper protein (GILZ). GILZ expression levels were further shown to control antigen-presenting cell function, as well as T-cell priming capacity of DCs. However, the pattern of GILZ expression in DC subsets across tissues remains poorly described, as well as the modulation of its expression levels in different pathological settings. To fill in this knowledge gap, we conducted an exhaustive analysis of GILZ relative expression levels in DC subsets from various tissues using multiparametric flow cytometry. This study was performed at steady state, in the context of acute as well as chronic skin inflammation, and in a model of cancer. Our results show the heterogeneity of GILZ expression among DC subsets as well as the complexity of its modulation, that varies in a cell subset- and context-specific manner. Considering the contribution of GILZ in the control of DC functions and its potential as an immune checkpoint in cancer settings, these results are of high relevance for optimal GILZ targeting in therapeutic strategies.


Subject(s)
Dendritic Cells/pathology , Inflammation/pathology , Organ Specificity , Transcription Factors/metabolism , Acute Disease , Animals , Biomarkers/metabolism , Cell Line, Tumor , Cell Movement , Chronic Disease , Langerhans Cells/pathology , Lymph Nodes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/pathology , Skin/pathology
14.
Blood ; 137(20): 2770-2784, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33512478

ABSTRACT

Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.


Subject(s)
Dendritic Cells/physiology , Inflammation/pathology , Primary Immunodeficiency Diseases/physiopathology , Receptors, CXCR4/physiology , Warts/physiopathology , Alphapapillomavirus/genetics , Animals , Benzylamines/pharmacology , Cell Count , Cell Differentiation , Chemokine CXCL12/physiology , Chemotaxis , Cyclams/pharmacology , Dendritic Cells/classification , Epidermis/pathology , Female , Gene Knock-In Techniques , Genes, Viral , Humans , Inflammation/metabolism , Langerhans Cells/physiology , Lymphoid Tissue/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , Organ Specificity , Parabiosis , Primary Immunodeficiency Diseases/blood , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/pathology , Recombinant Proteins/metabolism , Warts/blood , Warts/genetics , Warts/pathology
15.
Cells ; 10(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33466410

ABSTRACT

Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.


Subject(s)
Cell Movement/immunology , Chemokines/immunology , G-Protein-Coupled Receptor Kinases/immunology , Receptors, Chemokine/immunology , Signal Transduction/immunology , Animals , Humans
16.
Annu Rev Pharmacol Toxicol ; 61: 541-563, 2021 01 06.
Article in English | MEDLINE | ID: mdl-32956018

ABSTRACT

Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.


Subject(s)
Neoplasms , Chemokine CXCL12 , Humans , Ligands , Receptors, CXCR4 , Signal Transduction , Tumor Microenvironment
17.
Nat Commun ; 11(1): 4855, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978390

ABSTRACT

The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes ß-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance.


Subject(s)
Astrocytes/metabolism , Cell Communication/physiology , Connexin 43/metabolism , Gap Junctions/pathology , Receptors, CXCR/metabolism , Animals , Cell Proliferation , Connexin 43/drug effects , Connexins/metabolism , Gene Knock-In Techniques , Glioblastoma/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Interaction Domains and Motifs , Receptors, CXCR/agonists , Receptors, CXCR/genetics , Signal Transduction/physiology
18.
J Leukoc Biol ; 107(6): 1123-1135, 2020 06.
Article in English | MEDLINE | ID: mdl-32374043

ABSTRACT

Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.


Subject(s)
Chemokine CXCL12/chemistry , Cyclic AMP/chemistry , Receptors, CXCR4/chemistry , Receptors, CXCR/chemistry , Amino Acid Sequence , Benzylamines , Binding Sites , Chemokine CXCL11/chemistry , Chemokine CXCL11/genetics , Chemokine CXCL11/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Cyclams , Cyclic AMP/metabolism , Gene Expression , HEK293 Cells , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Molecular Dynamics Simulation , Mutation , Oligopeptides/chemistry , Oligopeptides/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , beta-Arrestins/genetics , beta-Arrestins/metabolism
20.
Papillomavirus Res ; 8: 100169, 2019 12.
Article in English | MEDLINE | ID: mdl-31283993

ABSTRACT

The linear reverse blotting assays are valid methods for accurate human papillomavirus (HPV) typing required to manage women at risk of developing cervical cancer. However, some samples showed a positive signal in HPV lines but failed to display a positive signal in subsequent typing lines (designated as HPV-X), which indicate that certain types were not available on the respective typing blots. The aim of this study is to elucidate the types or variants of HPV through the high-throughput sequencing (HTS) of 54 ASCUS cervical samples in which the viruses remained untypeable with INNO LiPA HPV® assays. Low-risk (LR)-HPV types (HPV6, 30, 42, 62, 67, 72, 74, 81, 83, 84, 87, 89, 90 and 114), high-risk (HR)-HPV35 and possibly (p)HR-HPV73 were detected among HPV-X. Individual multiple infections (two to seven types) were detected in 40.7% of samples. Twenty-two specimens contained variants characterised by 2-10 changes. HPV30 reached the maximal number of 17 variants with relative abundance inferior or equal to 2.7%. The presence of L1 quasispecies explains why linear reverse blotting assays fail when variants compete or do not match the specific probes. Further studies are needed to measure the LR-HPV quasispecies dynamics and its role during persistent infection.


Subject(s)
Cervix Uteri/virology , Genetic Variation , High-Throughput Nucleotide Sequencing , Papillomaviridae/genetics , Papillomavirus Infections/virology , Quasispecies/genetics , Base Sequence , DNA, Viral , Female , Genotype , Humans , Molecular Typing , Papillomaviridae/classification , Papillomavirus Infections/complications , Phylogeny , Sequence Analysis, DNA , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...